Difan Liu

I am a research scientist at Adobe Research, where I work on computer graphics, computer vision and machine learning.

I received my PhD from UMass Amherst advised by Evangelos Kalogerakis. Prior to UMass Amherst, I got my bachelor's degree with honors in Electrical Engineering from University of Science and Technology of China.

Internships: I'm always happy to host research interns at Adobe Research. If you are interested in working with me, please send me an email describing your past experience and current research interests.

Email  /  Google Scholar  /  Github

profile photo
Research

My research interests include generative models, vector graphics and video generation. I am particularly interested in the synthesis and editing of images, video and vector graphics based on machine learning.

Customize-A-Video: One-Shot Motion Customization of Text-to-Video Diffusion Models
Yixuan Ren, Yang Zhou, Jimei Yang, Jing Shi, Difan Liu, Feng Liu, Mingi Kwon, Abhinav Shrivastava
ECCV, 2024
Project

HARIVO: Harnessing Text-to-Image Models for Video Generation
Mingi Kwon, Seoung Wug Oh, Yang Zhou, Difan Liu, Joon-Young Lee, Haoran Cai, Baqiao Liu, Feng Liu, Youngjung Uh
ECCV, 2024
Project

VecFusion: Vector Font Generation with Diffusion
Vikas Thamizharasan*, Difan Liu*, Shantanu Agarwal, Matthew Fisher, Michaël Gharbi, Oliver Wang, Alec Jacobson, Evangelos Kalogerakis
(*equal contribution)
CVPR, 2024   (Highlight)
PDF

NIVeL: Neural Implicit Vector Layers for Text-to-Vector Generation
Vikas Thamizharasan, Difan Liu, Matthew Fisher, Nanxuan Zhao, Evangelos Kalogerakis, Michal Lukáč
CVPR, 2024
PDF

Visual Layout Composer: Image-Vector Dual Diffusion Model for Design Layout Generation
Mohammad Amin Shabani, Zhaowen Wang, Difan Liu, Nanxuan Zhao, Jimei Yang, Yasutaka Furukawa
CVPR, 2024
Project

Attention-Driven Training-Free Efficiency Enhancement of Diffusion Models
Hongjie Wang, Difan Liu, Yan Kang, Yijun Li, Zhe Lin, Niraj Jha, Yuchen Liu
CVPR, 2024
PDF

SNED: Superposition Network Architecture Search for Efficient Video Diffusion Model
Zhengang Li, Yan Kang, Yuchen Liu, Difan Liu, Tobias Hinz, Feng Liu, Yanzhi Wang
CVPR, 2024
PDF

LRM: Large Reconstruction Model for Single Image to 3D
Yicong Hong, Kai Zhang, Jiuxiang Gu, Sai Bi, Yang Zhou, Difan Liu, Feng Liu, Kalyan Sunkavalli, Trung Bui, Hao Tan
ICLR, 2024   (Oral Presentation)
PDF / Project

ASSET: Autoregressive Semantic Scene Editing with Transformers at High Resolutions
Difan Liu, Sandesh Shetty, Tobias Hinz, Matthew Fisher, Richard Zhang, Taesung Park, Evangelos Kalogerakis
SIGGRAPH - Journal Track, 2022
PDF(low-res) / PDF(high-res) / Project

Neural Strokes: Stylized Line Drawing of 3D Shapes
Difan Liu, Matthew Fisher, Aaron Hertzmann, Evangelos Kalogerakis
ICCV, 2021
PDF / Project

Neural Contours: Learning to Draw Lines from 3D Shapes
Difan Liu, Mohamed Nabail, Aaron Hertzmann, Evangelos Kalogerakis
CVPR, 2020
PDF / Project

ParSeNet: A Parametric Surface Fitting Network for 3D Point Clouds
Gopal Sharma, Difan Liu, Subhransu Maji, Evangelos Kalogerakis, Siddhartha Chaudhuri, Radomír Měch
ECCV, 2020
PDF / Project

Neural Shape Parsers for Constructive Solid Geometry
Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, Subhransu Maji
TPAMI, 2020
PDF / Code

Deep Part Induction from Articulated Object Pairs
Li Yi, Haibin Huang, Difan Liu, Evangelos Kalogerakis, Hao Su, Leonidas Guibas
SIGGRAPH Asia, 2018
PDF / Code

CSGNet: Neural Shape Parser for Constructive Solid Geometry
Gopal Sharma, Rishabh Goyal, Difan Liu, Evangelos Kalogerakis, Subhransu Maji
CVPR, 2018
PDF / Code

Product Impacts, Tech Transfers, and Demos

  • Firefly Text to Image in Express and Firefly, 2023
  • Project Glyph Ease at Adobe MAX Sneaks, 2023
  • Project Res Up at Adobe MAX Sneaks, 2023

  • This webpage is cool